Mean first-passage times in confined media: from Markovian to non-Markovian processes

نویسندگان

  • Olivier Benichou
  • Thomas Guérin
  • Raphaël Voituriez
  • O Bénichou
  • T Guérin
  • R Voituriez
چکیده

We review recent theoretical works that enable the accurate evaluation of the mean first passage time (MFPT) of a random walker to a target in confinement for Markovian (memory-less) and non-Markovian walkers. For the Markovian problem, we present a general theory which allows one to accurately evaluate the MFPT and its extensions to related first-passage observables such as splitting probabilities and occupation times. We show that this analytical approach provides a universal scaling dependence of the MFPT on both the volume of the confining domain and the source target distance in the case of general scale-invariant processes. This analysis is applicable to a broad range of stochastic processes characterized by length scale-invariant properties, and reveals the key role that can be played by the starting position of the random walker. We then present an extension to non-Markovian walks by taking the specific example of a tagged monomer of a polymer chain looking for a target in confinement. We show that the MFPT can be calculated accurately by computing the distribution of the positions of all the monomers in the chain at the instant of reaction. Such a theory can be used to derive asymptotic relations that generalize the scaling dependence with the volume and the initial distance to the target derived for Markovian walks. Finally, we present an application of this theory to the problem of the first contact time between the two ends of a polymer chain, and review the various theoretical approaches of this nonMarkovian problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean first-passage times of non-Markovian random walkers in confinement.

The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of fi...

متن کامل

A Non-Preemptive Two-Class M/M/1 System with Prioritized Real-Time Jobs under Earliest-Deadline-First Policy

This paper introduces an analytical method for approximating the performance of a two-class priority M/M/1 system. The system is fully non-preemptive. More specifically, the prioritized class-1 jobs are real-time and served with the non-preemptive earliest-deadline-first (EDF) policy, but despite their priority cannot preempt any non real-time class-2 job. The waiting class-2 jobs can only be s...

متن کامل

Error analysis and efficient sampling in Markovian state models for molecular dynamics.

In previous work, we described a Markovian state model (MSM) for analyzing molecular-dynamics trajectories, which involved grouping conformations into states and estimating the transition probabilities between states. In this paper, we analyze the errors in this model caused by finite sampling. We give different methods with various approximations to determine the precision of the reported mean...

متن کامل

Non-Markovian closure kinetics of flexible polymers with hydrodynamic interactions.

This paper presents a theoretical analysis of the closure kinetics of a polymer with hydrodynamic interactions. This analysis, which takes into account the non-Markovian dynamics of the end-to-end vector and relies on the preaveraging of the mobility tensor (Zimm dynamics), is shown to reproduce very accurately the results of numerical simulations of the complete nonlinear dynamics. It is found...

متن کامل

A simple method to calculate first-passage time densities with arbitrary initial conditions

Numerous applications all theway frombiology and physics to economics depend on the density of first crossings over a boundary.Motivated by the lack of general purpose analytical tools for computingfirst-passage time densities (FPTDs) for complex problems, we propose a new simple method based on the independent interval approximation (IIA).We generalise previous formulations of the IIA to inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017